
www.manaraa.com

DIRAC INFRASTRUCTURE FOR DISTRIBUTED ANALYSIS

S. Paterson∗, University Of Glasgow, Glasgow, UK
A. Tsaregorodtsev, Centre de Physique des Particules de Marseille, Marseille, France

Abstract

DIRAC is the LHCb Workload and Data Management
system for Monte Carlo simulation, data processing and
distributed user analysis. Using DIRAC, a variety of re-
sources may be integrated, including individual PC’s, lo-
cal batch systems and the LCG grid. We report here on
the progress made in extending DIRAC for distributed user
analysis on LCG. In this paper we describe the advances
in the workload management paradigm for analysis with
computing resource reservation by means of Pilot Agents.
This approach allows DIRAC to mask any inefficiencies of
the underlying Grid from the user thus increasing the effec-
tive performance of the distributed computing system. The
modular design of DIRAC at every level lends the system
intrinsic flexibility. The possible strategy for the evolution
of the system will be discussed.

The DIRAC API consolidates new and existing services
and provides a transparent and secure way for users to sub-
mit jobs to the Grid. Jobs find their input data by interrogat-
ing the LCG File Catalogue which the LCG Resource Bro-
ker also uses to determine suitable destination sites. While
it may be exploited directly by users, it also serves as the
interface for the GANGA Grid front-end to perform dis-
tributed user analysis for LHCb.

DIRAC has been successfully used to demonstrate dis-
tributed data analysis on LCG for LHCb. The system per-
formance results are presented and the experience gained is
discussed.

INTRODUCTION

LHCb[1] will generate an unprecedented amount of data
when it comes online in 2007. The amount of data is so
vast that no single institute can cope. LHCb needs to use all
available facilities across the entire collaboration in a dis-
tributed computing model through the Grid[2]. The model
adopted by LHCb involves the strong computing facility
at CERN which forms the Tier 0 centre, being supported
by other facilities distributed across the world. Tier 1 cen-
tres service a large region or country and Tier 2 centres
do the same on a smaller scale. As well as the resources
available for LHCb on the LHC Computing Grid (LCG)[3],
DIRAC[4] can integrate individual PCs or batch systems.
Pooling together these resources will revolutionise the way
in which data is stored and manipulated.

∗Also Marie Curie Fellow at C.P.P.M. Marseille, France.

BACKGROUND & PHILOSOPHY
DIRAC was originally created with the following main

aims: data production on all resources available to LHCb;
providing a means to distribute LHCb data in real time ac-
cording to the Computing Model and also steering, mon-
itoring and accounting of all LHCb activities on the Grid
and other distributed resources.

The DIRAC software architecture is based on a set of
distributed, collaborating services. Designed to have a
light implementation, DIRAC is easy to deploy, config-
ure and maintain on a variety of platforms. Following
the paradigm of a Services Oriented Architecture (SOA),
DIRAC is lightweight, robust and scalable. This was in-
spired by the OGSA/OGSI “grid services” concept and the
LCG/ARDA RTAG architecture blueprint[5].

DIRAC 
Central WMS

LCG Resource 
Broker

Job

Pilot 
Agent

Worker Node

Pilot 
Agent

Job

Figure 1: Illustration of the DIRAC Pilot Agent paradigm.

The DIRAC Workload Management System (WMS) re-
alises the PULL scheduling paradigm. Pilot Agents sub-
mitted to LCG or DIRAC sites request jobs whenever the
corresponding resource is free, this is outlined in Figure 1.

In the context of LHCb, distributed analysis is a batch
analysis but with minimised response time. This is not an
interactive, parallel analysis system such as PROOF[6] but
prioritization and optimization of available resources for
LHCb. The aim is to provide a stable platform for analysis
on inherently unstable resources and therefore mask the in-
efficiencies of LCG from the user. Due to the success of the
Pilot Agent approach for production jobs it was decided to
extend DIRAC to cope with distributed user analysis, the
progress made is described here.



www.manaraa.com

DIRAC INFRASTRUCTURE
To outline the DIRAC Infrastructure for distributed anal-

ysis let us consider a typical user job with input data.
Firstly, the job will be submitted to DIRAC directly or via
Ganga[7] using the DIRAC API.

DIRAC API
The DIRAC API consolidates new and existing function-

ality to provide users with a transparent way to submit jobs
to the Grid. Jobs in DIRAC are composed of Steps and
Modules as outlined in Figure 2.

Job

Contains 
Steps

Step 1

Contains 
Modules

Module 1

Software 
Installation 

Module 2

Execute 
Application 

Figure 2: Jobs in DIRAC are composed of Steps which in
turn are composed of modules. In principle, any workflow
(DAG) can be created using this architecture.

Using these as building-blocks, any topology of Steps
can be created but this is transparent from the perspective
of the user. Jobs may contain many Steps, each of which
may depend on each other in a complicated manner. In this
way DIRAC Jobs can be thought of as a Directed Acyclic
Graph (DAG). The DIRAC API is principally a scripting
language but may also be used from the Python prompt. It
provides functionality to securely submit, monitor, retrieve
and delete Jobs. Input data is specified by LFN and in prin-
ciple this is all the user need know when submitting jobs.

WORKLOAD MANAGEMENT SYSTEM
Once a Job has been submitted to the DIRAC WMS via

the DISET[8] Security infrastructure, the Job Receiver ser-
vice assigns a Job ID and saves the Job in the Job Database
along with the proxy of the user. During the submission
process the Sandbox services ensure the upload of any in-
put files to steer the application. Figure 3 shows an outline
of the Central WMS services and interactions with LCG
components.

The Job Receiver then notifies the Data Optimizer
which queries the LCG File Catalog (LFC) for input data
files to find a suitable Grid Storage Element (SE). The Data
Optimizer then inserts the Job into a Task Queue. At this
point the Agent Director sends a Pilot Agent to LCG using
the requirements of the Job. The Agent Monitor checks the
Pilot Agent and triggers resubmission as required. Once
a Pilot Agent successfully reaches a Worker Node (WN) it

DIRAC API

Job 
Receiver

Job DB
Data 

Optimizer

Sandbox 
Services

Task 
Queue

MatcherAgent 
Director

Agent 
Monitor

LCG 
Resource 

Broker

Worker Node

Job 
Monitoring 

Service

Agent

LCG 
File 

Catalog

Figure 3: Outline of the DIRAC Workload Management
System.

installs DIRAC and runs an Agent which requests a particu-
lar job from a particular user. The Matcher service matches
the requirements of jobs (e.g. possible SEs) to the prop-
erties of the computing resource presented by the Agent.
Since the Agent can in turn put specific requirements on
jobs, this is called a ‘double match’ procedure. Figure 4
outlines the interactions between a DIRAC Agent running
on a Worker Node, the WMS Central services and LCG
components. Once a job has been delivered to the WN, any
software which is not already available locally is installed.
Links to any pre-installed software are created local to the
job during installation of DIRAC.

Worker Node

Watchdog 
Process

LCG File 
Catalog

Sandbox 
Services

Job 
Monitoring 

Service
Matcher

Job

Job Wrapper

DIRAC 
Central WMS

DIRAC Agent

Grid 
Storage 
Element

Figure 4: DIRAC Workload Management on the Worker
Node.

The Agent dynamically creates a Job Wrapper using in-



www.manaraa.com

formation local to the WN, which is then executed. The Job
Wrapper downloads the Input Sandbox of the job and pro-
vides access to the input data. The LFNs are resolved into
‘best replica’ PFNs for the execution site and a POOL[9]
XML Slice is automatically generated for the available pro-
tocols. Currently any protocols supported by POOL can be
used, although in the absence of these data is brought local
to the job before execution.

The Job application is then invoked in a child process
and a Watchdog process is started in parallel to the appli-
cation which provides ‘heart-beats’ for the Job Monitoring
Service. This also collects accounting information such as
CPU and memory consumption. If the application ceases
consuming CPU, the job can be marked as stalled. The Job
Wrapper notifies the Job Monitoring Service of the changes
in the job state. After the Job has finished, the Job Wrapper
handles the upload of the Output Sandbox using the Sand-
box services and storing the output in the Job Database.
Any Output Data will be uploaded to a predefined SE at this
point. Once a DIRAC Agent has finished, the Pilot Agent
terminates gracefully thus freeing the LCG resource. At all
stages, the Job Monitoring Service is used as an interface
to update the Job information.

PILOT AGENT STRATEGY
There are several ways to use the DIRAC infrastructure

but the end goal is to minimise the start time of user analy-
sis jobs. Firstly, the Agent Director and Agent Monitor ser-
vices may be used to define a policy on how Pilot Agents
are submitted. Secondly, the choice of DIRAC Agent can
be made which affects how jobs are picked up from the
WN. Therefore, it is possible to define modes of submis-
sion ‘tuned’ for the needs of specific jobs:

• ‘Resubmission’ Mode: LCG submission with moni-
toring of the LCG failures, multiple Pilot Agents may
be sent if necessary

• ‘Filling’ Mode: Multiple Pilot Agents may be sent
which request several jobs from the same user, only
requesting a new job once the current one has finished

• ‘Multi-Threaded Filling’ Mode: Same as Filling
Mode above except two jobs can be run in parallel on
the WN

It is important to note that this is a DIRAC optimiza-
tion and is not possible with standard LCG tools. Consider
a typical LHCb Monte Carlo (MC) Production job which
will execute for approximately one day. The start time for
this job is not a priority although getting it started is still
an issue, thus the ‘Resubmission’ mode would be suffi-
cient. For user analysis jobs, however, the ‘Filling’ and
‘Multi-Threaded’ modes become useful in minimizing the
start times on LCG whilst maximising the use of resources.
This can be effective since analysis jobs are heavily I/O
bound and hence less CPU intensive than e.g. MC Produc-
tion jobs.

IMPLEMENTATION DETAILS
DIRAC is implemented in Python, using XML-RPC

protocol for client-service access and Jabber for reliable
service-service communication. A MySQL database is
used for maintaining all information for services and jobs.
The client-service communications are secured using the
DISET framework which is conformant with the stan-
dard GSI infrastructure. Using standard components and
third party developments as much as possible has enabled
DIRAC to remain highly adaptable. The modular design at
each level makes adding new functionality relatively sim-
ple.

PERFORMANCE & EXPERIENCE
A study of the various DIRAC modes of submission was

performed using short analysis jobs. Since DIRAC has
been proven to cope with long Production jobs, this serves
to test the other extreme. Measuring performance on the
Grid is not an exact science, therefore to tackle the gen-
eral Grid ’weather’ the following precautions were taken.
Firstly, jobs were submitted at the pace of the Resource
Broker and job start times were measured relative to the
submission time to DIRAC. Secondly, to ensure similar
conditions, thirty users were submitting jobs in turn with
each user submitting a different mode. The results pre-

Figure 5: Start times by mode for a total of 3000 jobs sub-
mitted to DIRAC by 30 users.

sented here are ten distinct experiments of three users sub-
mitting one hundred jobs for each mode with three thou-
sand jobs submitted in total. Figure 5 shows the distri-
bution of job start times for each mode of submission.
This shows a considerable improvement for the Filling and
Multi-Threaded modes when compared to the peak for Re-
submission which is the LCG benchmark result. The first
LCG job to start occurs at the nine minute region whereas
many jobs for the other two modes have already started.
This highlights the power of maximising the responsive-
ness of the system through the Filling and Multi-Threaded
modes. The tails in the Filling and Multi-Threaded distri-
butions are due to the initial jobs at the start of the exper-



www.manaraa.com

iment that need first to reserve an LCG resource. These
tails normally diminish at the steady mode of operation. It
is important to note that all three thousand jobs completed
successfully so the real goal is to minimise the start times.

Figure 6 shows the mean start times by experiment for
the three thousand jobs. This shows a clear improve-
ment for the Filling and Multi-Threaded modes and demon-
strates reproducability of the results. These results show

Figure 6: Mean start times for 10 experiments submitting a
total of 3000 jobs to DIRAC from 30 users.

that even when LCG is performing well, there is a signifi-
cant improvement on the results. Another important point
is that fewer Pilot Agents need to be sent for the Filling and
Multi-Threaded modes and so the load on LCG can be re-
duced. Comparing the number of Pilot Agents sent versus
the number of jobs executed we see a factor three for the
Filling and a factor of five for the Multi-Threaded mode in
our experiments. These factors depend on the amount of
the available resources and on the Job characteristics. It is
important to note that no special queues are required to be
defined on LCG as are usually required to cope with high
priority tasks. The described experiments were performed
using thirty distinct users. Optimizing the workload can
only currently be performed at the level of the user to sat-
isfy the LCG security rules, therefore the results presented
in Figures 5 and 6 reflect the optimization on a one hundred
job basis. We can conclude that optimization on this scale
is effective but not as powerful as optimization on the level
of the Virtual Organisation (VO) could be.

Figure 7 outlines the effect of optimizing the workload
on the level of the VO versus multiple users. In this experi-
ment two thousand jobs were submitted simultaneously, to
ensure the same conditions, in Multi-Threaded mode. Half
of the jobs were from a single user and the remainder were
from ten distinct users. A clear improvement of the effi-
ciency is observed in the first case.

CONCLUSION

The use of the Pilot Agent Paradigm for LHCb jobs has
resulted in a very high overall efficiency for LCG jobs.
Recent tests[10] measure this at 95% with the remaining

Figure 7: Comparison of the effect of number of users on
the start time of jobs.

5% due to inconsistencies in the LFC. Extending the pro-
duction system to cope with user analysis jobs has been
demonstrated to be effective and this open the door to fur-
ther optimizations not possible with LCG tools. By testing
the performance of the system with short analysis jobs it is
evident that a significant improvement on the job start times
could be obtained by facilitating optimization of the work-
load on the level of the VO rather than the individual users.
The DIRAC infrastructure for supporting distributed anal-
ysis activitites in LHCb is in place. Real users are starting
to use and more importantly benefit from the system.

ACKNOWLEDGEMENTS
The authors would like to recognise the Marie Curie

Foundation for the fellowship which made this research
possible, as well as PPARC and IN2P3. We would also
like to thank the members of the DIRAC team.

REFERENCES
[1] S. Amato et al., LHCb Technical proposal, CERN/LHCC98-

4.

[2] LHCb Computing TDR, CERN/LHCC 2005-019.

[3] LHC Computing Grid (LCG), http://lcg.web.cern.ch/LCG/.

[4] A. Tsaregorodtsev et al., DIRAC, the LHCb Data Produc-
tion and Distributed Analysis system, CHEP 2006, Mumbai,
India.

[5] T. Wenaus et al., Architecture Blueprint RTAG report,
CERN-LCGAPP-2002-09.

[6] G. Ganis et al., PROOF - The Parallel ROOT Facility, CHEP
2006, Mumbai, India.

[7] U. Egede et al., GANGA - A GRID User Interface, CHEP
2006, Mumbai, India.

[8] Casajus Ramo, A., Graciani Diaz R., DIRAC Security In-
frastructure, CHEP 2006, Mumbai, India.

[9] POOL Project, http://lcgapp.cern.ch/project/persist/.

[10] U. Egede et al., Experience with distributed analysis in
LHCb, CHEP 2006, Mumbai, India.


